K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

ÁP dụng bất đẳng thức bunyakovsky:

\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)

Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)

khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)

\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)

đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

5 tháng 5 2017

anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may 

NV
28 tháng 8 2021

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

24 tháng 5 2019

Em không chắc đâu nha!

Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)

Tương tự với  y với z.Ta có:

\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)

\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)

\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)

\(=\left(x+y+z\right)+3=1+3=4\)

Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.

Vậy....

24 tháng 5 2019

Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.

9 tháng 8 2023

\(\left(x+1\right)\left(y+1\right)=9\)

\(\Rightarrow xy+x+y+1=9\)

\(\Rightarrow xy+x+y=8\)

\(\Rightarrow x+y=8-xy\left(1\right)\)

\(K=x^2+y^2\)

\(\Rightarrow K=\left(x+y\right)^2-2xy=\left(8-xy\right)^2-2xy\)

\(\Rightarrow K=64-16xy+\left(xy\right)^2-2xy\)

\(\Rightarrow K=\left(xy\right)^2-18xy+64\)

\(\Rightarrow K=\left(xy\right)^2-18xy+81-17\)

\(\Rightarrow K=\left(xy-9\right)^2-17\ge-17\left(\left(xy-9\right)^2\ge0,\forall x;y\right)\)

\(\Rightarrow GTNN\left(K\right)=-17\)

9 tháng 8 2023

GTNN (K) = -17